
Information and Software Technology 115 (2019) 1–4

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Multi-reviewing pull-requests: An exploratory study on GitHub OSS

projects

Dongyang Hu

∗ , Yang Zhang , Junsheng Chang , Gang Yin , Yue Yu , Tao Wang

Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha, China

a r t i c l e i n f o

Keywords:

Multi-reviewing

Pull-requests

GitHub

a b s t r a c t

Context: GitHub has enabled developers to easily contribute their review comments on multiple pull-requests and

switch their review focus between different pull-requests, i.e. , multi-reviewing. Reviewing multiple pull-requests

simultaneously may enhance work efficiency. However, multi-reviewing also relies on developers’ rationally

allocating their focus, which may bring a different influence to the resolution of pull-requests.

Objective: In this paper, we present an ongoing study of the impact of multi-reviewing on pull-request resolution

in GitHub open source projects.

Method: We collected and analyzed 1,836,280 pull-requests from 760 GitHub projects to explore how multi-

reviewing affects the resolution of a pull-request.

Results: We find that multi-reviewing is a common behavior in GitHub. However, more multi-reviewing behaviors

tend to bring longer pull-request resolution latency.

Conclusion: Multi-reviewing is a complex behavior of developers, and has an important impact on the efficiency

of pull-request resolution. Our study motivates the need for more research on multi-reviewing.

1

d

l

m

t

i

c

p

r

t

b

r

c

X

c

t

c

r

A

i

d

t

o

i

e

t

r

a

h

m

f

h

R

A

0

. Introduction

By implementing the concept of social coding , GitHub creates a

eveloper-friendly environment that enables developers to network, col-

aborate, and promote their projects [1] . Pull-request is the primary

ethod for code contributions from thousands of developers. To main-

ain the quality of the contribution of pull-request, pull-request review

s an essential part of distributed software development [2] . Such so-

ial coding contribution also leads to enhance pull-request resolution

rocess, in which developers can easily participate in reviewing pull-

equests. As a result, it is common to find that developers contribute

heir review comments on multiple pull-requests and switch their focus

etween pull-requests. In our study, we define it as multi-reviewing .

Fig. 1 gives an overview of the multi-reviewing process. During the

esolution of pull-request A, many developers may participate in and

omment, trying to review this pull-request. In particular, developer

 may participate in A’s review first (). Then, although A was not

losed, X switched his/her focus to another pull-request, B, and con-

ributed a comment in B’s review().
∗ Corresponding author.

E-mail addresses: hudongyang17@163.com (D. Hu), yangzhang15@nudt.edu.cn (Y

m

r

l

S

ttps://doi.org/10.1016/j.infsof.2019.07.004

eceived 26 February 2019; Received in revised form 10 June 2019; Accepted 11 Ju

vailable online 13 July 2019

950-5849/© 2019 Elsevier B.V. All rights reserved.
Next, although B was not closed, X moved to A’s review again and

ontributed two comments (and). After that, X participated in B’s

eview again (). Thus, we find that X switched his/her focus between

 and B over time.

Multi-reviewing, can be seen as a kind of multitasking. Multitask-

ng aims to optimize human resource allocation and reprioritize tasks

ynamically, which is the ability for developers to stop dealing with a

ask, switch to another task, and return to its original mission, as needed

r as scheduled [3] . Recently, many studies have explored the multitask-

ng in GitHub Projects [4] . However, to the best of our knowledge, no

xisting research has been conducted on how developers do the multi-

asking between pull-requests, i.e. , at a pull-request level. To fill this

esearch gap, we aim to explore how developers do the multi-reviewing

nd what the impact of multi-reviewing on pull-request resolution.

Multi-reviewing may enhance the work efficiency of developers,

elping them review multiple pull-request simultaneously. However,

ulti-reviewing relies on developers’ rationally allocating their time and

ocus, which may vary. Different strategies and focus of multi-reviewing

ay bring different effects to pull-request resolution. Exploring multi-

eviewing behavior can help developers understand the benefits and

imitations when they switch their review focus between pull-requests.

pecifically, we ask:
. Zhang).

ly 2019

https://doi.org/10.1016/j.infsof.2019.07.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2019.07.004&domain=pdf
mailto:hudongyang17@163.com
mailto:yangzhang15@nudt.edu.cn
https://doi.org/10.1016/j.infsof.2019.07.004

D. Hu, Y. Zhang and J. Chang et al. Information and Software Technology 115 (2019) 1–4

Fig. 1. Overview of the multi-reviewing process.

Table 1

Aggregate statistics of the 760 projects.

Statistic Mean St.Dev. Min Median Max

#Members 12.6 30.3 2.0 6.0 336.0

#Forks 1159.8 2264.5 3.0 443.5 26,487.0

#Stars 4004.0 10,851.6 6.0 803.5 215,302.0

#Pull-requests 2247.0 845.1 1515.0 2180.0 4984.0

2

2

a

I

p

w

2

d

o

S

o

a

i

f

b

b

Fig. 2. Examples of calculating the P Focus .

b

r

i

r

0

2

b

a

f

e

P

p

a

d

a

RQ1 : How many pull-requests in which the developers do the multi-

reviewing?

RQ2 : How does multi-reviewing affect the resolution of a pull-request?

In summary, our findings are:

• On average, 62% of pull-requests in our dataset contains the multi-

reviewing developers, but the percentage of different projects vary.

• More multi-reviewing may bring more focus switching, thereby caus-

ing longer pull-request resolution latency.

. Methodology

.1. Data set

We obtain the data from GHTorrent [5] , which is an effort to create

 scalable, offline mirror of data offered through the Github REST API.

n our study, we select those large projects that have more than 1500

ull-requests as our studied projects. Finally, we collect 760 projects

ith 1,836,280 pull-requests. Table 1 shows the aggregate statistics.

.2. Measuring the review-switching focus – P Focus

To explore how multi-reviewing affects pull-request resolution, we

evelop the measurement P Focus , to define the rate and breadth of devel-

pers’ review-switching focus in a given week. In this work, we use the

hannon entropy index [4] , to calculate the P Focus as 1
−
∑𝑁

𝑖 =1 𝑝 𝑖 log 2 𝑝 𝑖 +1
.

Considering a project developer Y in the i ’th week, p i is the fraction

f the pull-request among all pull-requests that Y reviewed in this week,

nd N is the total number of pull-requests that Y reviewed during the

 ’th week. Thus, the higher the P Focus value of the developer, the more

ocus on the review comments in a pull-request, the less multi-reviewing

ehaviors the developer performs in other pull-requests.

For example, Fig. 2 shows two examples of calculating the P Focus

etween developer A and developer B. A and B review pull-requests
2
oth five times in a week. However, A reviewed three different pull-

equests, i.e. , #33024, #14056, and #58210, and reviewed pull-request

33024 three times in a week. B reviewed four different pull-requests,

.e. , #33024, #21776, #14452, and #67024, and his reviews of pull-

equests were relatively scattered in a week. So the P Focus (the value is

.73) of A is higher than the P Focus (the value is 0.52) of B.

.3. Regression analysis

To study how multi-reviewing affects pull-request resolution, we

uild the mixed-effects linear regression model (using packages lme4
nd lmerTest in R), i.e. , review focus model , with the random-effect

actor programming language of the project. All other variables are mod-

led as fixed effects. The dependent variable (outcome) of this model is

RLatency . It is the resolution latency of a pull-request, in minutes, as a

roxy for a pull-request resolution speed. In our study, we only consider

 pull-request latency between a pull-request creation to its first closing

ate.

The control and independent variables of this model are described

s follows:

• avgFocus : average P Focus value of all developers in the pull-request,

as a proxy for the developers’ review focus.

• nComments : total number of comments in this pull-request, as a

proxy for the review length.

• nParticipants : total number of developers that participated in this

pull-request, as a proxy for the work effort of this pull-request.

• textLen : total words length of a pull-request text (title and descrip-

tion), as a proxy for pull-request importance and complexity. Longer

D. Hu, Y. Zhang and J. Chang et al. Information and Software Technology 115 (2019) 1–4

Fig. 3. Distribution of the percentage of multi-reviewed pull-requests.

t

l

r

s

a

u

t

3

3

m

t

D

i

r

s

a

p

p

T

3

o

o

o

p

o

g

t

t

f

t

Fig. 4. Pull-request resolution latency vs avgFocus .

Table 2

Review focus model. Resp.: log(PRLatency),

𝑅

2
𝑚
= 0.24, 𝑅

2
𝑐
= 0.31.

Estimate (Error) Sum Sq.

(Intercept) 0.0563 (0.0407)

avgFocus − 0.4543 (0.0019) ∗ ∗ ∗ 41,276 ∗ ∗ ∗

textLen 0.0429 (0.0019) ∗ ∗ ∗ 377 ∗ ∗ ∗

nParticipants 0.0402 (0.0021) ∗ ∗ ∗ 254 ∗ ∗ ∗

nComments 0.1200 (0.0021) ∗ ∗ ∗ 2,287 ∗ ∗ ∗

nPRs − 0.0352 (0.0020) ∗ ∗ ∗ 223 ∗ ∗ ∗

nMembers 0.0202 (0.0020) ∗ ∗ ∗ 74 ∗ ∗ ∗

nForks 0.0909 (0.0026) ∗ ∗ ∗ 877 ∗ ∗ ∗

nStars − 0.0134 (0.0026) ∗ ∗ ∗ 19 ∗ ∗ ∗

∗ ∗ ∗ p < 0.001, ∗ ∗ p < 0.01, ∗ p < 0.05.

2

t

W

d

m

l

t

t

o

H

c

fi

4

r
descriptions may indicate higher importance and complexity of pull-

request or better documentation [6] .

• nPRs : total number of pull-requests in the project, as a proxy for the

overall workload of the project.

• nMembers : total number of members in the project, as a proxy for

the human resource of the project.

• nForks : total number of forks in the project, as a proxy for the rela-

tionship network of the project [7] .

• nStars : total number of stars in the project, as a proxy for the popu-

larity of the project [8] .

In our models, the variance inflation factors, which measure mul-

icollinearity [9] of the set of predictors in our models, are safe, be-

ow 3. For each model variable, we report its coefficients, standard er-

or, significance level, and the sum of squares (via ANOVA). We con-

ider such coefficients noteworthy if they were statistically significant

t p < 0.05. The mixed-effects linear regression model fit is evaluated

sing a marginal (𝑅

2
𝑚

) and a conditional (𝑅

2
𝑐
) coefficient of determina-

ion for generalized mixed-effects models [10] .

. Study results

.1. RQ1: How many pull-requests in which the developers do the

ulti-reviewing?

To answer the question, we calculate the percentage of pull-requests

hat contains at least one multi-reviewing developer in the 760 projects.

uring one pull-request lifetime, i.e. , from its creation to its first clos-

ng date, if at least one of its developers also reviewed other pull-

equest(s), we call this pull-request as multi-reviewed pull-request . Fig. 3

hows the boxplot of the percentage of multi-reviewed pull-requests

mong the 760 projects. On average, the percentage of multi-reviewed

ull-requests is 62.4% (median of 67.0%). However, we find that the

ercentage of multi-reviewed pull-requests in different projects vary.

hus, we find that,

On average, in 62% of pull-requests of our dataset, the participants
also multi-reviewing other pull-request(s).

.2. RQ2: How does multi-reviewing affect the resolution of a pull-request?

During a pull-request resolution, there may exist one or many devel-

pers to review. Some of them may perform the multi-reviewing, some

f them may not, which may bring different effects to pull-request res-

lution latency. We calculate the average P Focus of developers in each

ull-request as avgFocus . AvgFocus represents the uncertainty in devel-

pers’ focus switching behaviors (or the diversity of focus switches) in a

iven week. The higher the avgFocus , the lower the entropy, the higher

he developer’s focus in this pull-request. On the contrary, the lower

he avgFocus , the higher the entropy, the more scattered the developer’s

ocus and developer has more multi-reviewing behaviors.

The value of avgFocus in over 98% pull-requests of our dataset is be-

ween 0 to 16 approximately. We mark the value of avgFocus from 0 to
3
 as 2, from 2 to 4 as 4, and so on. Fig. 4 shows the boxplots of the rela-

ionship between the avgFocus of pull-request and the resolution latency.

e find that when avgFocus increases, pull-request resolution latency

ecreases, i.e. , the less multi-reviewing behaviors in a pull-request, the

ore focus of developers on this pull-request, and the shorter resolution

atency.

Further, Table 2 shows the summary of review focus model . In total,

he model explained 𝑅

2
𝑐
= 0.31 of the deviance (𝑅

2
𝑚
= 0.24). The fac-

or avgFocus is significant and has the most sizeable and negative effect

n pull-request resolution latency (90.9% of the variance explained).

olding all other variables constant, for a one-unit increase in avgFo-

us, the expected decrease in PRLatency is 36.5% (1 − 𝑒 −0 . 4543). Thus, we

nd that,

In a pull-request, more review-switching means less focus of par-
ticipants, which may bring longer pull-request resolution latency.
Thus, more multi-reviewing behaviors within a pull-request may
retard the resolution process.

. Research agenda

Our study provides a rich resource of initial ideas for further study.

Further analyze the barriers and benefits when multi-

eviewing. Our study provides a preliminary study of the multi-

D. Hu, Y. Zhang and J. Chang et al. Information and Software Technology 115 (2019) 1–4

r

r

c

w

r

m

f

b

p

s

i

p

a

n

s

o

m

t

t

d

i

c

p

t

t

m

m

q

i

5

p

r

m

r

e

F

a

D

A

f

n

C

S

t

R

[

eviewing in GitHub, including its basic usage and effect on pull-request

esolution. Multi-reviewing may improve the developers’ work effi-

iency, but it may also disperse the developers’ focus. Hence, future

ork should further investigate the barriers and benefits of the multi-

eviewing in pull-request mechanism.

Explore the effect of the particular number of pull-requests on

ulti-reviewing outcomes. We found that different focus may af-

ect pull-request resolution. Developers may have a choice of the num-

er of pull-requests reviewed, and that reviewing different number of

ull-requests associates with different outcomes. Therefore, developers

hould pay attention to the review workload, and researchers should

nvestigate the barriers and benefits developers face when reviewing a

articular number of pull-requests. Moreover, the issue of how to man-

ge and help developers review the appropriate number of pull-requests

eeds to be addressed.

Investigate the differences of participants between more dimen-

ions during multi-reviewing. Our quantitative study mostly focused

n comparing the review focus between different developers. How the

ulti-reviewing participants differ in other dimensions should be fur-

her empirically evaluated. E.g., it would be interesting to study par-

icipants’ gender differences in multi-reviewing, since researches have

emonstrated that gender in social science is also a significant factor

n software development. With much more data and careful developers

lassification along different dimensions, some patterns may become ap-

arent.

Design automatic tools to support the multi-reviewing. We find

hat multi-reviewing has a significant impact on developers collabora-

ion. However, there is still a lack of automatic tools that support the

ulti-reviewing. Tool builders should design and develop some auto-

atic tools, e.g. , a pull-request prioritization tool to prioritize pull re-

uests that developers need to review, helping developers focus on those

mportant tasks.

. Conclusion and future work

This paper explores the relationship between multi-reviewing and

ull-request resolution. We collected and analyzed 1,836,280 pull-

equests from 760 GitHub open-source projects. Our results show that

ore review-switching may bring longer resolution latency of a pull-

equest.

In future work, we plan to conduct an in-depth analysis of the experi-

nces and expectations when developers multi-reviewing pull-requests.
4
urthermore, we plan to optimize our regression models and develop

utomatic tools to guide developers’ multi-reviewing operation.

eclarations of interest

None.

cknowledgments

This work was supported by Laboratory of Software Engineering

or Complex Systems as well as the National Grand R&D Plan (Grant

o. 2018YFB1004202), and the National Natural Science Foundation of

hina (Grant no. 61702534).

upplementary material

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.infsof.2019.07.004 .

eferences

[1] L. Dabbish , C. Stuart , J. Tsay , J. Herbsleb , Social coding in GitHub: transparency

and collaboration in an open software repository, in: Proceedings of the ACM 2012

Conference on Computer Supported Cooperative Work, ACM, 2012, pp. 1277–1286 .

[2] Y. Yu , H. Wang , G. Yin , T. Wang , Reviewer recommendation for pull-requests in

GitHub: what can we learn from code review and bug assignment? Inf. Softw. Tech-

nol. 74 (2016) 204–218 .

[3] R.F. Adler , R. Benbunan-Fich , Juggling on a high wire: multitasking effects on per-

formance, Int. J. Hum.-Comput. Stud. 70 (2) (2012) 156–168 .

[4] B. Vasilescu , K. Blincoe , Q. Xuan , C. Casalnuovo , D. Damian , P. Devanbu ,

V. Filkov , The sky is not the limit: multitasking across GitHub projects, in: 2016

IEEE/ACM 38th International Conference on Software Engineering (ICSE), IEEE,

2016, pp. 994–1005 .

[5] G. Gousios , D. Spinellis , Ghtorrent: GitHub’s data from a firehose, in: 2012 9th IEEE

Working Conference on Mining Software Repositories (MSR), IEEE, 2012, pp. 12–21 .

[6] Y. Yu , H. Wang , V. Filkov , P. Devanbu , B. Vasilescu , Wait for it: determinants of pull

request evaluation latency on GitHub, in: 2015 IEEE/ACM 12th Working Conference

on Mining Software Repositories, IEEE, 2015, pp. 367–371 .

[7] A.G. Silvius , R. Schipper , A conceptual model for exploring the relationship between

sustainability and project success, Procedia Comput. Sci. 64 (2015) 334–342 .

[8] K. Aggarwal , A. Hindle , E. Stroulia , Co-evolution of project documentation and pop-

ularity within GitHub, in: 2014 Proceedings of the 11th Working Conference on

Mining Software Repositories, ACM, 2014, pp. 360–363 .

[9] R. York , Residualization is not the answer: rethinking how to address multicollinear-

ity, Social science research 41 (6) (2012) 1379–1386 .

10] A. Arcuri , X. Yao , A novel co-evolutionary approach to automatic software bug fix-

ing, in: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on

Computational Intelligence), IEEE, 2008, pp. 162–168 .

https://doi.org/10.13039/501100001809
https://doi.org/10.1016/j.infsof.2019.07.004
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30147-8/sbref0010

	Multi-reviewing pull-requests: An exploratory study on GitHub OSS projects
	1 Introduction
	2 Methodology
	2.1 Data set
	2.2 Measuring the review-switching focus - PFocus
	2.3 Regression analysis

	3 Study results
	3.1 RQ1: How many pull-requests in which the developers do the multi-reviewing?
	3.2 RQ2: How does multi-reviewing affect the resolution of a pull-request?

	4 Research agenda
	5 Conclusion and future work
	Declarations of interest
	Acknowledgments
	Supplementary material
	References

