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Context: GitHub has enabled developers to easily contribute their review comments on multiple pull-requests and 

switch their review focus between different pull-requests, i.e. , multi-reviewing. Reviewing multiple pull-requests 

simultaneously may enhance work efficiency. However, multi-reviewing also relies on developers’ rationally 

allocating their focus, which may bring a different influence to the resolution of pull-requests. 

Objective: In this paper, we present an ongoing study of the impact of multi-reviewing on pull-request resolution 

in GitHub open source projects. 

Method: We collected and analyzed 1,836,280 pull-requests from 760 GitHub projects to explore how multi- 

reviewing affects the resolution of a pull-request. 

Results: We find that multi-reviewing is a common behavior in GitHub. However, more multi-reviewing behaviors 

tend to bring longer pull-request resolution latency. 

Conclusion: Multi-reviewing is a complex behavior of developers, and has an important impact on the efficiency 

of pull-request resolution. Our study motivates the need for more research on multi-reviewing. 
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. Introduction 

By implementing the concept of social coding , GitHub creates a

eveloper-friendly environment that enables developers to network, col-

aborate, and promote their projects [1] . Pull-request is the primary

ethod for code contributions from thousands of developers. To main-

ain the quality of the contribution of pull-request, pull-request review

s an essential part of distributed software development [2] . Such so-

ial coding contribution also leads to enhance pull-request resolution

rocess, in which developers can easily participate in reviewing pull-

equests. As a result, it is common to find that developers contribute

heir review comments on multiple pull-requests and switch their focus

etween pull-requests. In our study, we define it as multi-reviewing . 

Fig. 1 gives an overview of the multi-reviewing process. During the

esolution of pull-request A, many developers may participate in and

omment, trying to review this pull-request. In particular, developer

 may participate in A’s review first ( ). Then, although A was not

losed, X switched his/her focus to another pull-request, B, and con-

ributed a comment in B’s review( ). 
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Next, although B was not closed, X moved to A’s review again and

ontributed two comments ( and ). After that, X participated in B’s

eview again ( ). Thus, we find that X switched his/her focus between

 and B over time. 

Multi-reviewing, can be seen as a kind of multitasking. Multitask-

ng aims to optimize human resource allocation and reprioritize tasks

ynamically, which is the ability for developers to stop dealing with a

ask, switch to another task, and return to its original mission, as needed

r as scheduled [3] . Recently, many studies have explored the multitask-

ng in GitHub Projects [4] . However, to the best of our knowledge, no

xisting research has been conducted on how developers do the multi-

asking between pull-requests, i.e. , at a pull-request level. To fill this

esearch gap, we aim to explore how developers do the multi-reviewing

nd what the impact of multi-reviewing on pull-request resolution. 

Multi-reviewing may enhance the work efficiency of developers,

elping them review multiple pull-request simultaneously. However,

ulti-reviewing relies on developers’ rationally allocating their time and

ocus, which may vary. Different strategies and focus of multi-reviewing

ay bring different effects to pull-request resolution. Exploring multi-

eviewing behavior can help developers understand the benefits and

imitations when they switch their review focus between pull-requests.

pecifically, we ask: 
. Zhang). 

ly 2019 
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Fig. 1. Overview of the multi-reviewing process. 

Table 1 

Aggregate statistics of the 760 projects. 

Statistic Mean St.Dev. Min Median Max 

#Members 12.6 30.3 2.0 6.0 336.0 

#Forks 1159.8 2264.5 3.0 443.5 26,487.0 

#Stars 4004.0 10,851.6 6.0 803.5 215,302.0 

#Pull-requests 2247.0 845.1 1515.0 2180.0 4984.0 
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Fig. 2. Examples of calculating the P Focus . 
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RQ1 : How many pull-requests in which the developers do the multi-

reviewing? 

RQ2 : How does multi-reviewing affect the resolution of a pull-request? 

In summary, our findings are: 

• On average, 62% of pull-requests in our dataset contains the multi-

reviewing developers, but the percentage of different projects vary. 

• More multi-reviewing may bring more focus switching, thereby caus-

ing longer pull-request resolution latency. 

. Methodology 

.1. Data set 

We obtain the data from GHTorrent [5] , which is an effort to create

 scalable, offline mirror of data offered through the Github REST API.

n our study, we select those large projects that have more than 1500

ull-requests as our studied projects. Finally, we collect 760 projects

ith 1,836,280 pull-requests. Table 1 shows the aggregate statistics. 

.2. Measuring the review-switching focus – P Focus 

To explore how multi-reviewing affects pull-request resolution, we

evelop the measurement P Focus , to define the rate and breadth of devel-

pers’ review-switching focus in a given week. In this work, we use the

hannon entropy index [4] , to calculate the P Focus as 1 
− 
∑𝑁 

𝑖 =1 𝑝 𝑖 log 2 𝑝 𝑖 +1 
. 

Considering a project developer Y in the i ’th week, p i is the fraction

f the pull-request among all pull-requests that Y reviewed in this week,

nd N is the total number of pull-requests that Y reviewed during the

 ’th week. Thus, the higher the P Focus value of the developer, the more

ocus on the review comments in a pull-request, the less multi-reviewing

ehaviors the developer performs in other pull-requests. 

For example, Fig. 2 shows two examples of calculating the P Focus 

etween developer A and developer B. A and B review pull-requests
2 
oth five times in a week. However, A reviewed three different pull-

equests, i.e. , #33024, #14056, and #58210, and reviewed pull-request

33024 three times in a week. B reviewed four different pull-requests,

.e. , #33024, #21776, #14452, and #67024, and his reviews of pull-

equests were relatively scattered in a week. So the P Focus (the value is

.73) of A is higher than the P Focus (the value is 0.52) of B. 

.3. Regression analysis 

To study how multi-reviewing affects pull-request resolution, we

uild the mixed-effects linear regression model (using packages lme4
nd lmerTest in R), i.e. , review focus model , with the random-effect

actor programming language of the project. All other variables are mod-

led as fixed effects. The dependent variable (outcome) of this model is

RLatency . It is the resolution latency of a pull-request, in minutes, as a

roxy for a pull-request resolution speed. In our study, we only consider

 pull-request latency between a pull-request creation to its first closing

ate. 

The control and independent variables of this model are described

s follows: 

• avgFocus : average P Focus value of all developers in the pull-request,

as a proxy for the developers’ review focus. 

• nComments : total number of comments in this pull-request, as a

proxy for the review length. 

• nParticipants : total number of developers that participated in this

pull-request, as a proxy for the work effort of this pull-request. 

• textLen : total words length of a pull-request text (title and descrip-

tion), as a proxy for pull-request importance and complexity. Longer
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Fig. 3. Distribution of the percentage of multi-reviewed pull-requests. 
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Fig. 4. Pull-request resolution latency vs avgFocus . 

Table 2 

Review focus model. Resp.: log(PRLatency), 

𝑅 

2 
𝑚 
= 0.24, 𝑅 

2 
𝑐 
= 0.31. 

Estimate (Error) Sum Sq. 

(Intercept) 0.0563 (0.0407) 

avgFocus − 0.4543 (0.0019) ∗ ∗ ∗ 41,276 ∗ ∗ ∗ 

textLen 0.0429 (0.0019) ∗ ∗ ∗ 377 ∗ ∗ ∗ 

nParticipants 0.0402 (0.0021) ∗ ∗ ∗ 254 ∗ ∗ ∗ 

nComments 0.1200 (0.0021) ∗ ∗ ∗ 2,287 ∗ ∗ ∗ 

nPRs − 0.0352 (0.0020) ∗ ∗ ∗ 223 ∗ ∗ ∗ 

nMembers 0.0202 (0.0020) ∗ ∗ ∗ 74 ∗ ∗ ∗ 

nForks 0.0909 (0.0026) ∗ ∗ ∗ 877 ∗ ∗ ∗ 

nStars − 0.0134 (0.0026) ∗ ∗ ∗ 19 ∗ ∗ ∗ 

∗ ∗ ∗ p < 0.001, ∗ ∗ p < 0.01, ∗ p < 0.05. 
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r  
descriptions may indicate higher importance and complexity of pull-

request or better documentation [6] . 

• nPRs : total number of pull-requests in the project, as a proxy for the

overall workload of the project. 

• nMembers : total number of members in the project, as a proxy for

the human resource of the project. 

• nForks : total number of forks in the project, as a proxy for the rela-

tionship network of the project [7] . 

• nStars : total number of stars in the project, as a proxy for the popu-

larity of the project [8] . 

In our models, the variance inflation factors, which measure mul-

icollinearity [9] of the set of predictors in our models, are safe, be-

ow 3. For each model variable, we report its coefficients, standard er-

or, significance level, and the sum of squares (via ANOVA). We con-

ider such coefficients noteworthy if they were statistically significant

t p < 0.05. The mixed-effects linear regression model fit is evaluated

sing a marginal ( 𝑅 

2 
𝑚 

) and a conditional ( 𝑅 

2 
𝑐 
) coefficient of determina-

ion for generalized mixed-effects models [10] . 

. Study results 

.1. RQ1: How many pull-requests in which the developers do the 

ulti-reviewing? 

To answer the question, we calculate the percentage of pull-requests

hat contains at least one multi-reviewing developer in the 760 projects.

uring one pull-request lifetime, i.e. , from its creation to its first clos-

ng date, if at least one of its developers also reviewed other pull-

equest(s), we call this pull-request as multi-reviewed pull-request . Fig. 3

hows the boxplot of the percentage of multi-reviewed pull-requests

mong the 760 projects. On average, the percentage of multi-reviewed

ull-requests is 62.4% (median of 67.0%). However, we find that the

ercentage of multi-reviewed pull-requests in different projects vary.

hus, we find that, 

On average, in 62% of pull-requests of our dataset, the participants 
also multi-reviewing other pull-request(s). 

.2. RQ2: How does multi-reviewing affect the resolution of a pull-request? 

During a pull-request resolution, there may exist one or many devel-

pers to review. Some of them may perform the multi-reviewing, some

f them may not, which may bring different effects to pull-request res-

lution latency. We calculate the average P Focus of developers in each

ull-request as avgFocus . AvgFocus represents the uncertainty in devel-

pers’ focus switching behaviors (or the diversity of focus switches) in a

iven week. The higher the avgFocus , the lower the entropy, the higher

he developer’s focus in this pull-request. On the contrary, the lower

he avgFocus , the higher the entropy, the more scattered the developer’s

ocus and developer has more multi-reviewing behaviors. 

The value of avgFocus in over 98% pull-requests of our dataset is be-

ween 0 to 16 approximately. We mark the value of avgFocus from 0 to
3 
 as 2, from 2 to 4 as 4, and so on. Fig. 4 shows the boxplots of the rela-

ionship between the avgFocus of pull-request and the resolution latency.

e find that when avgFocus increases, pull-request resolution latency

ecreases, i.e. , the less multi-reviewing behaviors in a pull-request, the

ore focus of developers on this pull-request, and the shorter resolution

atency. 

Further, Table 2 shows the summary of review focus model . In total,

he model explained 𝑅 

2 
𝑐 
= 0.31 of the deviance ( 𝑅 

2 
𝑚 
= 0.24). The fac-

or avgFocus is significant and has the most sizeable and negative effect

n pull-request resolution latency (90.9% of the variance explained).

olding all other variables constant, for a one-unit increase in avgFo-

us, the expected decrease in PRLatency is 36.5% (1 − 𝑒 −0 . 4543 ). Thus, we

nd that, 

In a pull-request, more review-switching means less focus of par- 
ticipants, which may bring longer pull-request resolution latency. 
Thus, more multi-reviewing behaviors within a pull-request may 
retard the resolution process. 

. Research agenda 

Our study provides a rich resource of initial ideas for further study. 

Further analyze the barriers and benefits when multi-

eviewing. Our study provides a preliminary study of the multi-
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eviewing in GitHub, including its basic usage and effect on pull-request

esolution. Multi-reviewing may improve the developers’ work effi-

iency, but it may also disperse the developers’ focus. Hence, future

ork should further investigate the barriers and benefits of the multi-

eviewing in pull-request mechanism. 

Explore the effect of the particular number of pull-requests on

ulti-reviewing outcomes. We found that different focus may af-

ect pull-request resolution. Developers may have a choice of the num-

er of pull-requests reviewed, and that reviewing different number of

ull-requests associates with different outcomes. Therefore, developers

hould pay attention to the review workload, and researchers should

nvestigate the barriers and benefits developers face when reviewing a

articular number of pull-requests. Moreover, the issue of how to man-

ge and help developers review the appropriate number of pull-requests

eeds to be addressed. 

Investigate the differences of participants between more dimen-

ions during multi-reviewing. Our quantitative study mostly focused

n comparing the review focus between different developers. How the

ulti-reviewing participants differ in other dimensions should be fur-

her empirically evaluated. E.g., it would be interesting to study par-

icipants’ gender differences in multi-reviewing, since researches have

emonstrated that gender in social science is also a significant factor

n software development. With much more data and careful developers

lassification along different dimensions, some patterns may become ap-

arent. 

Design automatic tools to support the multi-reviewing. We find

hat multi-reviewing has a significant impact on developers collabora-

ion. However, there is still a lack of automatic tools that support the

ulti-reviewing. Tool builders should design and develop some auto-

atic tools, e.g. , a pull-request prioritization tool to prioritize pull re-

uests that developers need to review, helping developers focus on those

mportant tasks. 

. Conclusion and future work 

This paper explores the relationship between multi-reviewing and

ull-request resolution. We collected and analyzed 1,836,280 pull-

equests from 760 GitHub open-source projects. Our results show that

ore review-switching may bring longer resolution latency of a pull-

equest. 

In future work, we plan to conduct an in-depth analysis of the experi-

nces and expectations when developers multi-reviewing pull-requests.
4 
urthermore, we plan to optimize our regression models and develop

utomatic tools to guide developers’ multi-reviewing operation. 
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